更多>>精华博文推荐
更多>>人气最旺专家

巴合尔阿什

领域:北青网焦点新闻

介绍:----老子医疗器械质量管理体系 (简述)主讲人:吕艳娜2014年8月10日质量管理体系----引入质量管理体系是组织内部建立的、为实现质量目标所必需的、系统的质量管理模式。...

晋昭侯

领域:爱丽婚嫁网

介绍:融资活动一般不通过金融中介机构。利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌

www.v66利来国际
本站新公告利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌
6bw | 2019-03-21 | 阅读(580) | 评论(21)
世纪研究生数学教材系列!同济大学研究生院!十五出版基金资助矩阵分析同济大学应用数学系编著!同济大学出版社目录!!前言!符号表#####################第章基础知识###!!!!#####################矩阵运算###!!!!!!####################线性方程组###!!#$!!#####################相似矩阵###!!%!!!######################正定阵###!!’#(!!#####################矩阵分解###!!#!!!####################广义特征值###!!)%(!!########################习题###!【阅读全文】
利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌
tpc | 2019-03-21 | 阅读(73) | 评论(18)
微观层面*中观层面五项重点工作一是加快推进基本医疗保障制度建设三是健全基层医疗卫生服务体系四是促进基本公共卫生服务逐步均等化五是推进公立医院改革试点二是初步建立国家基本药物制度医改方向*要建立健全十个方面的体制机制:一是建立协调统一的医药卫生管理体制;二是建立高效规范的医药卫生机构运行机制;三是建立政府主导的多元卫生投入机制;四是建立科学合理的医药价格形成机制;五是建立严格有效的医药卫生监管机制;六是建立可持续发展的医药卫生科技创新机制;七是建立可持续发展的医药卫生人才保障机制;八是建立实用共享的医药卫生信息系统;九是建立健全医药卫生法律制度;十是加强对深化医药卫生体制改革的领导。【阅读全文】
4jv | 2019-03-21 | 阅读(767) | 评论(875)
ThispageintentionallyleftblankRandomGraphDynamicsThetheoryofrandomgraphsbeganinthelate1950sinseveralpapersbyErd¨osandR′,thenotionofsixdegreesofseparation,meaningthatanytwopeopleontheplanetcanbeconnectedbyashortchainofpeoplewhoknoweachother,inspiredStrogatzandWattstodenethesmallworldrandomgraphinwhicheachsiteiscon-nectedtokcloseneighbors,,itwasobservedinhumansocialandsexualnetworksandontheInternetthatthenu′asiandAlberttodenethepreferentialattachmentmodel,,ngplaceonthegraphinadditiontotheirgeometricproperties,,hemovedtoCornell,wherehisresearchturnedtoapplicationsofprobability,rsttoecologyand,morerecently,,sixotherbooks,lBoard:,DepartmentofMathematics,,DepartmentofStatistics,,EpsteinDepartmentofIndustrialSystemsEngi【阅读全文】
p5p | 2019-03-21 | 阅读(517) | 评论(18)
习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8【阅读全文】
ry5 | 2019-03-21 | 阅读(974) | 评论(331)
(√)11.在《关于对公共资源交易领域严重失信主体开展联合惩戒的备忘录》【阅读全文】
qme | 2019-03-20 | 阅读(12) | 评论(531)
3.营养不良在同学们学习生活中,长时间的处于低头状态,使颈椎受劳损。【阅读全文】
kcc | 2019-03-20 | 阅读(846) | 评论(21)
目的为机器、设备清除油垢、尘埃,谓之“清扫”,而“长期保持”这种状态就是“清洁”,将设备“漏水、漏油”现象设法找出原因,彻底解决,是根除不良和脏乱的源头。【阅读全文】
sfg | 2019-03-20 | 阅读(99) | 评论(213)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌,利来国际最给力的老牌
4uq | 2019-03-20 | 阅读(135) | 评论(234)
 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次【阅读全文】
t5j | 2019-03-19 | 阅读(982) | 评论(914)
有些人根本不看局编发的政务信息,对相关要求、固定格式、基本套路不去钻研,专门信息管理文件里面早已明确标准格式,上报信息格式却很随意。【阅读全文】
lep | 2019-03-19 | 阅读(253) | 评论(588)
所有这些活动都围绕提升文化自信展开,并让留学人员在参与活动的过程中感受到我们国家对他们的支持和细致的关心,用我们精心策划的具体活动让爱国主义教育走实,让留学人员爱党爱国走心。【阅读全文】
a3k | 2019-03-19 | 阅读(678) | 评论(77)
(1)总则:立法目的、适用范围、定义、合作原则、权益风险配置、管理体制、监管原则、财政资金管理;(2)政府和社会资本合作项目的产生【阅读全文】
sz4 | 2019-03-19 | 阅读(834) | 评论(753)
DISCUSS讨论平等的谈话多分享环节多自我的分享优势视角赋权and充权引导青少年正视内心,挖掘潜能,正面反馈,自行寻找解决方案或目标。【阅读全文】
col | 2019-03-18 | 阅读(581) | 评论(94)
一是干部培训学。【阅读全文】
hs2 | 2019-03-18 | 阅读(299) | 评论(678)
1)T细胞表位扩展:实验性自身免疫性脑脊髓膜炎(EAE)髓鞘碱性蛋白MBP或蛋白脂蛋白PLPMBP显性表位Ac1-11;84-104为次显性表位PLP显性表位139-151;178-191、249-173为次显性表位PLP139-151SJL/J小鼠R-EAE脾细胞1、对PLP139-151强烈增生2、对PLP178-191强烈增生:分子内扩展MBP84-104SJL/J小鼠R-EAE脾细胞对PLP139-151强烈增生:分子间扩展小鼠脑脊髓炎病毒SJL/J小鼠R-EAE脾细胞对MBP强烈增生:病毒表位内源性自身表位2)B细胞表位扩展:系统性红斑性狼疮SmB/B’八肽抗八肽抗nRNP(nuclearribonucleoprotein)抗DNASLE干燥综合症的表位扩展(血清中有抗La和Ro自身抗体)重组La抗LaC片断抗LaA片断抗LaF片断重组Ro抗LaA片断2、表位扩展的可能机制专职性APC(包括抗原特异性B细胞)与非专职性APC摄取组织碎片,加工处理抗原和呈递抗原的能力以及协同刺激分子表达增高,即刺激T细胞能力增强专职性与非专职性APC内质体的蛋白酶发生变化,导致裂解肽链的位置发生变化,使原次显性和阴性表位变成显性或次显性表位,因而使耐受性丧失自身反应细胞应答能力增高,易产生应答。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-03-21

利来娱乐国际 利来国际旗舰版 利来国际w66手机版 利来娱乐老牌 利来娱乐国际
利来国际w66娱乐平台 w66.cm利来国际 利来官方网站w66利来 利来国际w66客服 利来国际w66手机版
利来国际 利来国际手机版 w66利来娱乐公司 利来电游彩金 利来国际w66网页版
利来国际w66平台 利来国际w66手机版 利来国际w66手机网页 利来国际真人娱乐 利来国际w66网页版
台湾省| 石首市| 囊谦县| 习水县| 偏关县| 临漳县| 邵东县| 兰溪市| 周至县| 南召县| 繁峙县| 天津市| 永定县| 黔江区| 巧家县| 阿合奇县| 蕲春县| 华宁县| 榕江县| 威远县| 紫云| 安龙县| 鄂州市| 晋宁县| 军事| 开封市| 景宁| 阿拉善右旗| 巨鹿县| 新竹县| 西宁市| 和田县| 青神县| 宁城县| 灯塔市| 正定县| 汶上县| 双辽市| 旌德县| 洛川县| 海林市| http://m.71628194.cn http://m.35069632.cn http://m.07595167.cn http://m.11428226.cn http://m.65194379.cn http://m.60368311.cn